既有隧道结构保护监测:在城市改扩建工程中,新建深基坑可能与已运营的地铁隧道邻近。如果施工扰动导致隧道结构变形移位,将危及行车安全。通常既有隧道会布设位移计、收敛计等传感器进行监测,但这些点位有限且需要维护。无人机视觉监测能够作为有益补充,提供隧道结构整体的变形数据。利用运营间隙,小型无人机搭载测距相机进入隧道,在轨道两侧沿隧道走向飞行,获取隧道内壁和轨道的影像数据,建立隧道断面的基准模型。此后每隔数日重复巡航拍摄,系统比对新旧模型,可检测出隧道衬砌出现的毫米级位移或变形,以及钢轨轨距的细微变化。由于无人机可以自主避障并稳定控制姿态,监测过程对隧道正常运营不产生干扰。所有数据通过无线链路实时传送至地面监控中心,维保人员可随时掌握隧道状态。当监测显示隧道某区域变形超过阈值时,可立即通知地铁运营方减速或停运,并要求施工方暂停作业、采取降水减震等措施。这种技术手段为既有隧道提供了更有效的保护,确保新建工程不影响既有轨道交通的运营安全。既有隧道结构变形监测,防止新建工程干扰造成轨道偏移。自动化变形机器视觉位移监测仪预警

地铁车站开挖变形监测:地铁车站深基坑开挖规模大、持续时间长,期间基坑变形需严格监控,以免影响周边建筑和既有地下管线。除了传统监测布点外,引入无人机三维变形监测可为车站施工提供更完整的数据支持。无人机沿基坑四周预设航线多角度航拍,获取围护结构和周边地面的全景影像,生成高精度三维模型。系统自动提取围护墙顶部水平位移、坑底隆起量等关键指标,并与历次数据进行比对。毫米级的观测精度确保任何细微变形趋势都能被捕获。通过云平台,施工单位、监理和设计人员可同时查看当下的变形数据可视化结果。当监测显示某侧墙体形变位移接近报警值或坑底出现异常隆起时,各方能够及时协商采取应急措施,例如增加支撑或调整开挖顺序 。这种及时的干预将风险控制在萌芽阶段,确保地铁车站施工安全可控。一体化机器视觉位移监测仪检测城市地下工程施工期间,用视觉监测判断周边建筑是否受扰动。

邻近施工对建筑影响监测:城市施工往往挨着已有建筑,如果基坑开挖或桩基施工引起邻近建筑下沉开裂,将造成重大损失。传统做法是在周边建筑物布置少量沉降观测点和裂缝计,信息有限且可能滞后。利用无人机视觉监测,可以对邻近建筑进行完整的沉降和位移观测,为周边保护提供数据支撑。无人机在施工现场周边巡航,采集邻近建筑外墙和地基部位的图像,建立基准三维模型。此后每天或关键工序后重复监测,将新数据与基准模型比对可准确计算建筑物的沉降量和倾斜变化。如果某栋建筑在某日出现了较前日额外几毫米的不均匀沉降,系统会及时发出预警提醒施工方 。通过云平台,监理单位和相关部门也能同步查看这些监测结果。当监测显示邻楼沉降超出警戒值时,施工方可以立即暂停相应工序,采取回填土体、增设支撑等补救措施,并对受影响居民及时疏散安置。此举有效避免了施工扰动对周边建筑造成结构性破坏,保障了城市建设的安全进行。
储能场站地基稳定性监测:新建的电网储能场站往往由大量电池模块和变流设备组成,这些设备对安装地面的平整稳定要求高。如果地基发生不均匀沉降,可能导致设备倾斜移位,进而引发连接件受损或安全隐患。传统定点监测手段难以及时覆盖整个场站基础的细微变化。引入无人机视觉位移监测技术后,可对储能站内建筑物基础和设备支撑点进行巡检。无人机携带高精度摄像头在场站上空巡航,获取地面及设备基座的多视角图像数据,构建场站地形和设备布置的数字模型。通过对不同时间的模型进行比对分析,毫米级位移监测可准确发现某区域地基下沉几毫米的细微变化。监测系统将结果上传云平台,运维人员远程获取各设备区的沉降趋势报告。如发现某些电池柜基础持续下沉或倾斜,运维团队可及早采取补强地基或重新调平等措施,避免设备进一步倾斜损坏并降低起火等风险,保障储能场站长期安全运行。深基坑支护结构变形监测,预警支撑位移避免基坑失稳。

模块化产品体系适配不同结构类型与工况场景的灵活部署需求。广东省公路体系中既包含大量普通梁桥、中短隧道、小型边坡,也分布着特大型跨江桥、高墩深埋隧道及复合高边坡体,对监测系统的适配性提出挑战。星地遥感依托模块化产品体系构建“组合式感知方案”,通过XDYG-18北斗系统、XDYG-EC视觉系统、地基雷达、RapidSAR遥感平台等不同技术产品按需组合,灵活匹配不同结构类型、空间布局和施工阶段。每套系统具备单独供电、通信与边缘计算能力,可单点部署,也可通过LoRa/4G组网实现集群式远程统一管理。在某扩建高速中,面对桥隧交错、高差剧烈的复杂线路结构,星地遥感通过“多种设备、分区部署、统一管理”的策略,实现各类结构一体化监测,有效缩短部署周期,提升适配效率,满足多样化公路工况下的工程落地需求。尾矿坝坝顶沉降监测,精细观测掌握坝体下沉趋势。边坡支护机器视觉位移监测仪云平台
长输油气管线地质位移监测,提前预警防范管道断裂事故。自动化变形机器视觉位移监测仪预警
平台嵌入AI智能分析引擎,提升异常识别与趋势预测能力。传统水利监测主要依赖人工设阈值告警,对突发性或非线性异常难以快速识别。星地遥感在其智慧水利平台中引入AI智能分析引擎,利用机器学习算法对海量历史监测数据进行建模训练,具备趋势识别、突变检测和潜在风险评分等功能。系统可自动识别非线性位移变化、周期性异常震荡、突发滑移等情况,并输出预警等级与解释建议。以边坡监测为例,平台能基于10天前的微小变化趋势,预测未来72小时的滑移风险概率,辅助决策人员提前干预。在深圳某大坝项目中,该AI模型准确识别出一次由地下水位骤升引发的库岸局部沉降趋势,实现了提前72小时的预警通知,为风险控制赢得了充足时间。AI分析的引入,使得水利监测系统从“报警机制”向“预测体系”转型,迈入智能治理新阶段。自动化变形机器视觉位移监测仪预警
文章来源地址: http://yiqiyibiao.jzjcjgsb.chanpin818.com/gxyq/qtgxyq/deta_27784039.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。